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Oxidation of DNA yields the radical cation of guanine (G), either
directly or through hole transfer along the DNAπ stack.1 Oxidation
of G has been, therefore, extensively studied for understanding the
mechanism of DNA damage caused by ionizing radiation and
oxidizing agents.2 According to experimental evidence,G is the
DNA base with the lowest oxidation potential.3 Recently, photo-
electron spectroscopy has shown the existence of a distinct low
electron-binding energy band for oligonucleotides which contain
one or more guanine bases, arising from the ionization of aπ orbital
of G.3a In aqueous solution, the oxidation potential ofG is 1.29 V
versus NHE at pH 7,3b but there are both experimental and
theoretical evidences that its value in DNA could differ somewhat
from that of the isolated nucleotide.

Two effects have been recognized to lower the oxidation potential
of G in DNA: (i) the π stacking4 with other nucleotides, and (ii)
the formation of H-bonds at the N1 acidic site ofG, theKa of G+•

being ca. 5 orders of magnitude higher than that of neutralG.5

Both effects are expected to be significant. Concerning formation
of H-bonds, the effect of pairing with the complementary cytosine
(C) base on the oxidation potential ofG has been investigated by
determining the oxidation rate ofG via quenching of triplet
absorption ofN,N′-dibutylnaphthaldiimide and fullerene, used as
G oxidants in their triplet excited states.6 It was estimated that the
formation of theG:C complex lowers the oxidation potential ofG
by ca. 0.1 V, much less than what was estimated by computations,
ca. 0.75 eV in the gas phase.7

So far, there are no direct measurements of the oxidation potential
of G in the presence ofC, except for 7,8-dihydro-8-oxoguanosine,7b

whoseπ electron system is substantially different from that ofG,
as testified by its lower oxidation potential.8 We have, therefore,
performed electrochemical investigations of guanosine (Gs), cyti-
dine (Cd), andGs in the presence ofCd, both in dimethyl sulfoxide
(DMSO) and CHCl3, the latter solvent favoring the formation of
the Watson-Crick H-bondedGs:Cd complex, the most stable
among the several H-bondedG:C complexes which can be formally
written,9 integrated by a theoretical study of the oxidation potential
of Gs andGs:Cd in solution.

Voltammetric measurements have been carried out by Metrohm
757 VA, by using both platinum and glassy carbon working
electrodes. Suitable supporting electrolytes were chosen according
to their purity and to their solubility and electrochemical stability
in the chosen solvent. The working solutions were accurately purged
from dissolved oxygen by bubbling N2 for 5 min. Ag/AgCl with a
3 M aqueous KCl salt bridge was used as an external reference
electrode and the ferrocenium/ferrocene half-couple (Fc+/Fc) as
internal reference in all the measurements.10 To increase their
solubility in CHCl3, G andC were derivatized withtert-butyldi-
methylsilyl groups on the ribose unit to yield 2′,3′-O-isopropylidene-
5′-O-(tert-butyldimethylsilyl)guanosine (Gs′) and 3′,5′-bis-O-(tert-
butyldimethylsilyl)-2-deoxycytidine (Cd′), the former was synthe-

sized from commercial 2′,3′-O-isopropylideneguanosine, the latter
from 2-deoxycytidine.11

The formation of theGs′:Cd′ complex was studied in CHCl3

containing 0.1 M tetrabutylammonium perchlorate, the supporting
electrolyte used in voltammetric measurements, to evaluate the
effect of the ionic strength of the solution on theGs′:Cd′ formation
constant (Kassoc). The latter has been evaluated via1H NMR, by
using the procedure outlined in ref 12. In 0.1 M tetrabutylammo-
nium perchlorate,Kassoc ) 2 × 104 M-1, very similar to that
measured for 2′,3′,5′-tripentanoylguanosine with 4-ethylcytosine in
CDCl3 (1 × 104 M-1).13

The voltammograms ofGs and Gs:Cd in DMSO and ofGs′,
Cd′, and Gs′:Cd′ in CHCl3 are reported in Figures 1 and 2,
respectively.

In DMSO, oxidation of Gs occurs at ca. 0.73 V versus
ferrocenium/ferrocene (roughly 1.44 V vs NHE).10 All of the oxi-
dation potentials are referred to the peak of current/potential curve
in the differential pulse voltammogram.14 Oxidation ofCd is not
observed in the allowed potential window. The addition of an
equimolar amount ofCd to Gs does not show any relevant change
in both shape and position of the current/potential curve ofGs, as

Figure 1. Voltammetric curves of nucleoside bases in DMSO at 25°C.
(a) Differential pulse voltammogram of: (9) 1 mM Gs; (b) 1 mM Cd. (b)
Cyclic voltammogram of 1 mMGs and 1 mMCd. Working electrode, Pt;
supporting electrolyte, 0.1 M Bu4NClO4; scan rate, 50 mV/s; internal
reference half-couple, Fc+/Fc, in both the experiments.
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expected because of the lowKassocin DMSO,15 less than 1.5% of
total Gs is in the form ofGs:Cd complex in the analyzed solution.

In CHCl3 (Figure 2), the oxidation potential ofGs′ is shifted
toward more positive potentials, owing to the 10-fold lower
dielectric constant of CHCl3 with respect to that of DMSO and/or
to specific solvent-solute interactions; the oxidation peak shifts at
0.91 V versus Fc+/Fc couple.

Even in CHCl3, oxidation ofCd′ is not observed, but addition
of Cd′ to Gs′ causes the appearance of a double signal, one
occurring at the same potential of isolatedGs′ (0.91 V), which can
be therefore assigned to the fraction of isolatedGs′ in solution,
the other, at 0.57 V, which, on the basis of theoretical computations
(vide infra), can be assigned to the formation ofGs′:Cd′ complex.

To better assign the experimental signals, we have carried out a
computational study of the ionization potentials ofG andC and of
theG:C Watson-Crick complex, in the gas phase and in the two
solvents used in voltammetric measurements. All computations have
been carried out by the Gaussian 03 package,16 using hybrid density
function theory (DFT) (B3LYP/6-31++g**) and the polarizable
continuum medium method for evaluating solvent effects.17 The
results are reported in Table 1. Both the adiabatic and the vertical
ionization potential ofG in the gas phase are well reproduced by
the adopted computational method, the experimental values being

7.77 and 8.24 eV, respectively.18 The solvent polarity affects
significantly the oxidation potential of bothG andG:C complex
(cf. Table 1).

Concerning the effect of the formation of the H-bond complex
G:C, in CHCl3, the computed IP of the pairG:C is 5.77 eV, 0.25
eV lower than that of isolated guanine, again in very good
agreement with the voltammetric measurements (∆Eox ) 0.34 V).

In conclusion, we have shown that the oxidation potential of a
guanine derivative is significantly affected by base pairing with a
cytosine derivative; the lowering of the oxidation potential amounts
to 0.34 V.
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Figure 2. Voltammetric curves of nucleoside base derivatives in CHCl3

at 25°C. (a) Differential pulse voltammogram of: (9) 1 mM Gs′; (b) 1
mM Cd′; (+) 1 mM Gs′; 1 mM Cd′. (b) Cyclic voltammogram of 1 mM
Gs′ and 1 mMCd′. Working electrode, Pt; supporting electrolyte, 0.1 M
Bu4NClO4; scan rate, 50 mV/s; internal reference half-couple, Fc+/Fc, in
both the experiments.

Table 1. Computed (DFT/B3LYP/6-311++g**) Adiabatic and
Vertical Ionization Potentials (eV) of G, C, and of the Watson and
Crick G:C Complex in the Gas Phase (ε ) 1), CHCl3 (ε ) 4), and
DMSO (ε ) 48)

Adiabatic Vertical

ε 1 4 48 1 4 48

G 7.66 6.02 5.63 7.91 6.32 5.86
C 8.62 6.87 6.44 8.74 6.99 6.61
G:C 6.92 5.77 7.28 6.05
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